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Abstract

We study the decision problems facing agents in
repeated matching environments with learning, or
two-sided bandit problems, and examine the dat-
ing market, in which men and women repeatedly go
out on dates and learn about each other, as an ex-
ample. We consider three natural matching mecha-
nisms and empirically examine properties of these
mechanisms, focusing on the asymptotic stability
of the resulting matchings when the agents use a
simple learning rule coupled with anε-greedy ex-
ploration policy. Matchings tend to be more stable
when agents are patient in two different ways —
if they are more likely to explore early or if they
are more optimistic. However, the two forms of pa-
tience do not interact well in terms of increasing
the probability of stable outcomes. We also define
a notion of regret for the two-sided problem and
study the distribution of regrets under the different
matching mechanisms.

1 Introduction
This paper analyzes the learning and decision problems of
agents in a model of one-to-one two-sided matching, focusing
on the role of the matching mechanism and the exploration-
exploitation tradeoff. We consider a repeated game in which
agents gain an uncertain payoff from being matched with a
particular person on the other side of the market in each time
period. A natural example of such a situation is the dating
market, in which men and women repeatedly go out on dates
and learn about each other. Another example is a spot labor
market, in which employers and employees are matched for
particular job contracts. A matching mechanism is used to
pair the agents. For example, we can consider a mechanism
in which all the women decide which man to “ask out,” and
then each man selects a woman from his set of offers, with
the rejected women left unmatched for that period.

Standard models of matching in economics[Roth and So-
tomayor, 1990] almost always assume that each agent knows
his or her preferences over the individuals on the other side
of the market. This assumption is too restrictive for many
markets, including the market for romantic partnerships. Our

model is driven by the need to relax this assumption. The ex-
isting literature on two-sided search with nontransferable util-
ity (for example[Burdett and Wright, 1998]) assumes match-
ing is exogenous and random. Our problem is more deeply re-
lated to bandit problems[Berry and Fristedt, 1985], in which
an agent must choose which arm of ann-armed bandit to pull
in order to maximize long-term expected reward, taking into
account the tradeoff betweenexploring, that is learning more
about the reward distribution for each arm, andexploiting,
pulling the arm with the maximum expected reward. How-
ever, in our model the arms themselves have agency — they
can decide whether to be pulled or not, or whom to be pulled
by, and they themselves receive rewards based on who the
puller is. This motivates our formulation of the problem as a
“two-sided” bandit problem.

In principle, we would like to examine the equilibrium be-
havior of agents in two-sided bandit problems. However, per-
fect Bayesian equilibria of the game we formulate are pro-
hibitively hard to compute. Because of this difficulty, the ap-
proach we use is closely related to the theory of learning in
games[Fudenberg and Levine, 1998], which considers more
generally how individual learning rules affect outcomes in
games and whether agents reach static equilibria.

In this paper we formally define the two-sided bandit prob-
lem and describe three important matching mechanisms. We
define regret as the difference between the actual reward re-
ceived and the reward under the stable matching, i.e. a match-
ing such that there is no pair that would rather be with each
other than with whom they are matched. We experimentally
analyze the asymptotic stability and regret properties when
agents useε-greedy learning algorithms adapted to the differ-
ent matching mechanisms.

The Gale-Shapley mechanism[Gale and Shapley, 1962],
which yields stability when information is complete and pref-
erences are truthfully revealed, converges quickly to stable
matchings, whereas mechanisms that are more realistic for
the dating example, in which women make single offers to
the men, do not always converge to stable matchings. Asymp-
totically stable matches are more likely when agents explore
more early on. They are also more likely when agents are
optimistic (again, early on) — that is, they assume a higher
probability of their offer being accepted or an offer being
made to them than is justified by the past empirical frequen-
cies of these events. However, increased optimism does not



interact well with increased exploration in terms of stability;
the probability of stability is actually higher for lower explo-
ration probabilities when optimism is greater.

2 The Model
There areM men andW women, who interact forT time
periods. vm

ij is the value of womanj to mani, andvw
ij is

the value of manj to womani. These values are constant
through time. In each period, men and women are matched
to each other through amatching mechanism. A matching is
a pairing between men and women in which each woman is
paired with one or zero men and each man is paired with one
or zero women. Formally, a matching mechanism is a map-
ping from agents’ actions to a matching. If mani is matched
with womanj in periodt, he receivesvm

ij + εm
ijt, and she re-

ceivesvw
ji + εw

jit. If unmatched, individuali receives some
constant valueKi.

For our empirical analysis we put some structure on the
reward processes and the matching mechanism. First, we
make the strong assumption of sex-wide homogeneity of pref-
erences. That is, every man is equally “good” for each
woman and vice versa — there are no idiosyncratic prefer-
ences and there are no couples who “get along” better than
others. Formally,vm

ij = vm
j ∀i andvw

ij = vw
j ∀i. We also

assume that people dislike being single:∀i, Ki � minj vz
ij

∀i, z ∈ {m,w}, and that the noise termsε are independently
and identically distributed.1 Extensions to more general pref-
erences are straightforward.2

We consider three matching mechanisms. Without loss of
generality, we assume that women always ask men out.

Gale-Shapley matchingEach agent submits a list of prefer-
ences and a centralized matching procedure produces a
matching based on these lists. The Gale-Shapley algo-
rithm [Gale and Shapley, 1962] guarantees a matching
that is stable under the submitted preferences. The man-
optimal variant yields the stable matching that is opti-
mal for men, and the woman-optimal variant the stable
matching that is optimal for women. We use the woman-
optimal variant.

Simultaneous offers Each woman independently chooses
one man to make an offer to. Each man selects one of
the offers he receives. Women who are rejected are un-
matched for the period, as are the men who receive no
offers.

Sequential offers Each woman independently chooses one
man to make an offer to. The offers are randomly or-
dered and men must decide on these “exploding” offers
without knowing what other offers are coming. Men see
all the offers they receive, including ones that arrive after
they accept. If an offer is rejected the woman making the
offer is unmatched in that period. A man is unmatched
if he rejects all offers he receives.

1Another plausible and interesting structure to consider is pair-
wise homogeneity of preferences withvm

ij = vw
ji ∀i, j.

2There is always a unique stable matching under the assumed
preference structure. With multiple stable matches, we would need
to use a different notion of regret, as discussed later.

Intuitively, it is useful to think of the simultaneous choice
mechanism as capturing a situation in which women ask men
out over e-mail and each man can review all his offers before
making a decision, while the sequential choice mechanism
captures the situation where women ask men out over the
telephone. We are particularly interested in these two match-
ing mechanisms because they are more plausible descriptions
of reality than a centralized matchmaker and do not require
agents to reveal their preferences to a third party.

3 The Decision and Learning Problems
We first describe the decision problems agents face at each
time step if they want to optimize their myopic reward in that
time step. After this we discuss the exploration-exploitation
issues under the different matching mechanisms and describe
specific forms of theε-greedy algorithm.

Let Q{m,w}
ij denote man (woman)i’s estimate of the value

of going out with woman (man)j, pw
ij denote womani’s esti-

mate of the probability that manj will go out with her if she
asks him out andpm

ij denote mani’s estimate of the probabil-
ity that womanj will ask him out under the sequential choice
mechanism.

3.1 Women’s Decision Problem
Under Gale-Shapley matching, women’s action space is the
set of rankings of men. Under the other two mechanisms, a
woman chooses which man to make an offer to. She must
base her decision on any prior beliefs and the history of re-
wards she has received in the past. She has to take into ac-
count both the expected value of going on a date with each
man and (for the non-Gale-Shapley mechanisms) the proba-
bility that he will accept her offer.

Under the woman-optimal variant of the Gale-Shapley
mechanism, the dominant myopic strategy, and thus the
greedy action, is for womani to rank the men according to
the expected value of going out with each of them,Qw

ij . For
the other two mechanisms, the greedy action is to ask out man
j = arg maxj(pw

ijQ
w
ij).

3.2 Arms With Agency: Men’s Decision Problem
The action space of men, the arms of the bandit, may be con-
strained by women’s actions. The decision problem faced
by a man depends on the matching mechanism used. Under
the woman-optimal Gale-Shapley mechanism, men may have
an incentive to misrepresent their preferences, but since the
sex-wide homogeneity of preferences ensures a unique stable
matching[Roth and Sotomayor, 1990], this is less likely to
be a problem.3 So, the greedy action for mani under Gale-
Shapley is to rank women based on theirQij ’s.

With the simultaneous choice mechanism, in each time pe-
riod a man receives a list of women who have made him an
offer. He must decide which one to accept. This is a ban-
dit problem with a different subset of the arms available at
each time period. The greedy action is to accept the woman
j = arg maxj Qm

ij .

3Specifically, if thesubmittedrankings satisfy sex-wide homo-
geneity, man- and woman-optimal algorithms yield the same match-
ing so truthtelling is the dominant myopic strategy for men.



Under the sequential choice mechanism, a man might re-
ceive multiple offers within a time period, and each time he
receives an offer he has to decide immediately whether to ac-
cept or reject it, and he may not renege on an accepted offer.
The information set he has is the list of women who have
asked him out so far. For each woman who has not asked him
out, it could either be that she chose not to make him an offer,
or that her turn in the ordering has not arrived yet. We can
formulate the man’s value function heuristically. Leti be the
index of the man, letS be the set of women who have asked
him out so far, and leth be the woman currently asking him
out (h ∈ S).

V (S, h) = max{Qm
ih,∑

k/∈S

Pr(k next woman to aski out)V (S ∪ {k}, k)}

The base cases areV (W, h) = Qw
ih whereW is the set of

all women. The greedy action is to accept an offer when

Qm
ih >

∑
k/∈S

Pr(k next woman to aski out)V (S ∪ {k}, k)

The relevant probabilities are:

Pr(k next woman to aski out) =∑
T∈Perm(S′)

 1
|S′|

 ∏
j precedingk in T

(1− pm
ij )

 pm
ik


whereS′ = W\S. This is a variant of the classic secretary

problem[Gilbert and Mosteller, 1966]. We are not sure at the
moment if this particular form can be simplified to yield a
closed form solution for the value or decision function.

3.3 The Exploration-Exploitation Tradeoff
Women and men both have to consider the exploration-
exploitation tradeoff (summarized in[Sutton and Barto,
1998]). Exploitationmeans maximizing expected reward in
the current period (also called the greedy choice), and is
solved as above.Explorationhappens when an agent does not
select the greedy action, but instead selects an action that has
lower expected value in the current period in order to learn
more and increase future rewards.

The one-sided version of the exploration-exploitation prob-
lem is central ton-armed bandit problems[Berry and Frist-
edt, 1985; Gittins and Jones, 1974,inter alia]. An n-armed
bandit is defined by random variablesXi,t where1 ≤ i ≤ n
is the index of the arm of the bandit, andXi,t specifies the
payoff received from pulling armi at time t. The distribu-
tion of some or all of theXi,t is unknown so there is value to
exploring. The agent pulls the arms sequentially and wishes
to maximize the discounted sum of payoffs. In our model, if
there is a single woman andn men, the woman faces a stan-
dardn-armed bandit problem.

One of the simplest techniques used for bandit problems
is the so-calledε-greedy algorithm. This algorithm se-
lects the arm with highest expected value with probability

1 − ε and otherwise selects a random arm. Although sim-
ple, the algorithm is very successful in most empirical prob-
lems, and we therefore use it in our experiments. We have
also experimented with alternatives like softmax-action selec-
tion with Boltzmann distributions[Sutton and Barto, 1998;
Luce, 1959] and the Exp3 algorithm[Auer et al., 2002].
These do not improve upon the empirical performance ofε-
greedy in our simulations.

Under each matching mechanism the exploratory action is
to randomly select an action, other than the greedy one, from
the available action space. Since the value of exploration de-
creases as learning progresses, we letε decay exponentially
over time which also ensures that the matchings converge.

At this stage we cannot solve for the perfect Bayesian equi-
librium set. We believe, however, that if the agents are suffi-
ciently patient and the horizon is sufficiently long, the match-
ings will converge to stability on the equilibrium path. Solv-
ing for the equilibrium set would enable us to explicitly char-
acterize the differences between equilibrium behavior and be-
havior under theε-greedy algorithm.

The two-sided nature of the learning problem leads to non-
stationarities. Under the sequential and simultaneous mech-
anisms, women need to consider the reward ofasking outa
particular man, not the reward of going out with him. The re-
ward of asking out a particular man depends on the probabil-
ity that he will accept the offer. Thus, the reward distribution
changes based on what the men are learning, introducing an
externality to the search process. The same applies to men un-
der the sequential mechanism since the probability that a par-
ticular woman will ask a man out changes over time. This is a
problem of coordinated learning that is related to the literature
on learning in games[Fudenberg and Levine, 1998] and to
reinforcement learning of nonstationary distributions in mul-
tiagent environments[Bowling and Veloso, 2002]. Some re-
cent work by Aueret al. on “adversarial” bandit problems,
which makes no distributional assumptions in deriving regret
bounds, is relevant in this context[Aueret al., 2002].

Since the underlyingvij ’s are constant we defineQij as
personi’s sample mean of the payoff ofgoing outwith per-
sonj. In order to deal with the nonstationarity ofpij ’s, on the
other hand, we use a fixed learning rate for updating the prob-
abilities which allows agents to forget the past more quickly:

pij [t] = (1− η)pij [t− 1] + ηI[offer made / accepted]

whereη is a constant andI is an indicator function indicat-
ing whether a man accepted an offer (for the woman’s update,
applied only if womani made an offer to manj at timet) or
whether a woman made an offer to a man (for the man’s up-
date, applied at each time periodt).

4 Empirical Results
Our simulations involve a market with 5 women and 5 men.
The agents useη of 0.05 for updating their probability esti-
mates and the probability of exploration evolves with time as
εt = εt/1000. Agents have true valuesvm

0 = vw
0 = 10, vm

1 =
vw
1 = 9, vm

2 = vw
2 = 8, vm

3 = vw
3 = 7, vm

4 = vw
4 = 6. We

assumeKi = 0 ∀i. The noise signalsε{m,w}
ijt are i.i.d. and
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Figure 1: Probability of a stable (asymptotic) matching as a
function of initial value ofε

drawn from a normal distribution with mean 0. Unless other-
wise specified, the standard deviation of the noise distribution
is 0.5. Reported results are averages from 500 simulations,
each lasting a total of 30,000 time steps. Initial values ofQij

are sampled from a uniform[6, 10] distribution and initial val-
ues ofpij are sampled from a uniform[0, 1] distribution.

Our experiments show that settings in which agents are
matched using the Gale-Shapley mechanism always result in
asymptotically stable matchings, even for very small initial
values ofε such as0.1. After a period of exploration, where
the agents match up with many different partners and learn
their preferences, agents start pairing up regularly with just
one partner, and this is always the agent with the same rank-
ing on the other side. This indicates that agents are generally
successful at learning their preferences. Interestingly, even if
only one side explores (that is, either men or women always
pick the greedy action), populations almost always converge
to stable matchings, with a slight decline in the probability of
stability when only men explore (under the woman-optimal
matching algorithm, women’s rankings can have a greater ef-
fect on the matching than men’s rankings).

The probabilities of convergence under the simultaneous
and sequential choice mechanisms are significantly lower, al-
though they increase with larger initial values ofε. We can see
this behavior in Figure 1, which also reveals that the probabil-
ity of convergence to a stable matching is much higher with
the simultaneous choice mechanism. Table 1 shows these
probabilities as well as the score, which is a measure of how
large the deviation from the stable matching is. If men and
women are indexed in order of their true value ranking, the
score for a matching is defined as1W

∑
i∈W |i − Partner(i)|

where Partner(i) is the true value ranking of the man woman
i is matched with, andW is the set of all women.

It is also interesting to look at who benefits from the insta-
bilities. In order to do this, we define a notion of regret for
an agent as the (per unit time) difference between the reward
under the stable matching and the actual reward received (a
negative value of regret indicates that the agent did better than

ID Simultaneous Regret Sequential Regret
Woman’s Man’s Woman’s Man’s

0 0.126 0.126 0.578 0.552
1 0.090 0.278 -0.023 0.009
2 0.236 0.136 -0.153 -0.148
3 0.238 -0.126 -0.005 -0.024
4 -0.690 -0.414 -0.171 -0.187

Table 2: Distribution of regret under simultaneous choice
(ε = 0.1) and sequential choice (ε = 0.9) mechanisms
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Figure 2: A “phase transition”: men and women are ranked
from 0 (highest) to 4 (lowest) with -1 representing the un-
matched state. The graph shows the transition to a situation
where the second highest ranked man ends up paired with the
lowest ranked woman

(s)he would have done under the stable matching). This de-
finition is unambiguous with sex-wide homogeneity of pref-
erences since there is only one stable matching, but could be
problematic in other contexts, when there may be multiple
stable matchings. In such cases it might make sense to ana-
lyze individual agent performance in terms of the difference
between average achieved reward and expected reward under
one of the stable matchings depending on context.

In the case of sex-wide homogeneity of preferences we of
course expect that regret will be greater for more desirable
agents since they have more to lose when their value is not
known. Table 2 shows the distribution of regrets for simul-
taneous and sequential choice. The regrets are averaged over
the last 10,000 periods of the simulation. Under simultaneous
choice, the worst woman benefits at the expense of all other
women while the worst two men benefit at the expense of the
top three. Under sequential choice, other agents benefit at the
expense of the best ones. Further research is needed to bet-
ter understand this apparent difference in the distribution of
regrets under the two mechanisms.

Figure 2 shows interesting dynamic behavior in one par-
ticular simulation where the second best man ends up with
the worst woman. The graph shows which man is matched
with which woman at each time period. The lines represent
the men, and the numbers on the Y axis represent the women.
The value -1 represents the state of being unmatched in that
period for a man. The men and women are ranked from 0
(best) to 4 (worst). Initially, the second best man is paired
with the best woman so he keeps rejecting offers from all the



ε Simultaneous Choice Sequential Choice Gale-Shapley
Pr (stability) Score Pr (stability) Score Pr (stability) Score

.1 0.318 0.4296 0.050 0.9688 1.000 0.0000

.2 0.444 0.3832 0.054 0.9280 1.000 0.0000

.3 0.548 0.2920 0.050 0.8560 1.000 0.0000

.4 0.658 0.1880 0.058 0.8080 1.000 0.0000

.5 0.788 0.0992 0.096 0.7448 1.000 0.0000

.6 0.856 0.0672 0.108 0.7064 1.000 0.0000

.7 0.930 0.0296 0.130 0.6640 1.000 0.0000

.8 0.970 0.0120 0.164 0.5848 1.000 0.0000

.9 0.998 0.0008 0.224 0.4912 1.000 0.0000

Table 1: Convergence to stability as a function ofε

σ Pr (stability) Score
0.5 0.658 0.1880
1.0 0.636 0.1952
1.5 0.624 0.2120
2.0 0.600 0.2328

Table 3: Convergence to stability as a function ofσ with si-
multaneous choice and initialε = 0.4

other women. These women thus learn that he is extremely
particular about whom he dates and there is no point in asking
him out. When the best woman finally learns that she can get
a better man this triggers a chain of events in which all the
men sequentially move to the woman ranked one higher than
the one they were seeing. However, all the women have such
a low opinion of the second best man that he ends up getting
matched with the very worst woman. The matching shown at
the end of the graph is the final asymptotic matching in this
simulation. Note that the gender asymmetry (women ask men
out) precludes this from happening to a woman.

Finally, we analyze how the noise distribution affects the
probability of stability. We expect that there will be less con-
vergence to stability when the signals are less precise. We ran
experiments in which the standard deviation of the noise dis-
tribution was changed while holding other factors constant.
We used an initialε of 0.4 and the same underlying values
as above. Table 3 shows the results using the simultaneous
choice mechanism. We vary the standard deviation from one
half of the distance between the two adjacent true values(0.5)
to twice that distance(2.0), and the probability of stability
falls by less than 10%. This suggests that the instabilities
arise mostly from the structure of the problem and the non-
stationarity of probability estimates rather than from the noise
in the signals of value.

5 Optimism and Exploration
The insight that instabilities arise mostly from the structure
of the problem suggests an alternative method for engineer-
ing asymptotic stability into the system. Suppose agents are
initially optimistic and their level of optimism declines over
time. This is another form of patience — a willingness to wait
for the best — and it should lead to more stable outcomes.

Optimism can be represented by a systematic overestima-
tion of the probability that your offer will be accepted or that
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Figure 3: The mechanism of stability with optimism: agents
keep trying better ranked agents on the other side until they
finally “fall” to their own level

an offer will be made to you. We explore this empirically
with the sequential choice mechanism. Instead of using the
learned values ofpij as previously defined, agents instead use
an optimistic version. At timet, both men and women use the
optimistic probability estimate:

p′ij = αt + (1− αt)pij

in decision making (the actualpij is maintained and updated
as before).αt should decline with time. In our simulations
α0 = 1, αT = 0 (whereT is the length of the simulation) and
α declines linearly witht. There are no other changes to any
of the decision-making or learning procedures.

Figure 3 shows the process by which agents converge to
asymptotic matchings (in this case a stable one) with the op-
timistic estimates. The structure of the graph is the same
as that in Figure 2. Essentially, each agent keeps trying for
the best agent (s)he can match with until the optimism para-
meter has declined sufficiently so (s)he “falls” to the equiv-
alently ranked agent on the other side of the market. Figure
4 shows that agents are considerably more likely to converge
asymptotically to stable matchings using this algorithm for
any value of the initial exploration probability. Of course,
this convergence comes at the expense of utility achieved in
the period before the agents settle down.
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Figure 4: Probability of convergence to stability for different
initial values of epsilon with all agents using the optimistic
algorithm versus all agents using the realistic algorithm

The surprising feature in Figure 4 is that stable matchings
are more likely with smaller initial exploration probabilities.
The V-shape of the graph shows that the probability of sta-
bility declines with increasing exploration up to an initialε
value of0.6, before starting to increase again, in contrast to
the monotonically increasing probability of stability without
optimism. This can be explained in terms of the fact that
a small level of exploration is sufficient for agents to learn
their preferences. Beyond that, additional exploration be-
comes counterproductive because the probability estimates at
the key stages become less reliable.

6 Conclusions and Future Work

We have defined two-sided bandit problems, a new class of
problems in multi-agent learning and described the proper-
ties of three important matching mechanisms withε-greedy
learning rules. Two-sided bandit problems are of great rel-
evance for social science in general and the search for mar-
riage partners in particular. The social norms governing ex-
ploration before marriage have been changing rapidly over
the last few decades and until now we have had no formal
structure within which to study the sources and consequences
of these changes. Our model is also more generally applica-
ble to two-sided markets in which agents have to learn about
each other.

This paper only scratches the surface of a large and poten-
tially fruitful set of theoretical and empirical questions. We
are exploring learning algorithms that would allow agents to
perform well4 across a broad range of environments without
having to make assumptions about the decision-making algo-
rithms or learning processes of other agents. Another direc-
tion of research is to explicitly characterize equilibria in sim-
pler settings. We are also interested in more complex versions
of the problem that allow for a greater diversity of preferences
and a larger number of agents.

4In the sense of regret minimization.
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